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Fig. S1. Sick and non-viable histone mutant alleles.  (A) Schematic of the histone point 
mutants analyzed in this study that were either lethal, could not be constructed after two 
attempts, or that could not be screened in the pE-MAP (e.g. due to slow growth). Secondary 
structure elements are indicated as ribbons above the amino acid sequence. The mutation 
background highlights are color-coded according to the mutation introduced (as in Fig. S1B), 
and the mutation font color indicates whether the mutant was lethal (red) or sick (black). Areas 
with a high incidence of sick and lethal mutations are highlighted (green boxes: nucleosome 
entry site; yellow boxes: close to dyad axis).  (B) Table of sick/lethal histone mutants and their 
hypothesized effects (color-coding as in Fig. S1A).  (C) Overview of H3 and H4 tail deletion 
mutants in this study that were either lethal (red) or sick (gray).  (D) Structural mapping of sick 
and lethal point mutants (PDB: 1ID3 with hypothetical N-terminal H3 and H4 tails, Data 
S�). Lethal or sick alleles not included in the pE-MAP are highlighted in red. 
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Fig. S2. Structural trends of the histone pE-MAP.  (A) The mean distance between histone 
mutants belonging to a cluster node of the hierarchically clustered pE-MAP plotted against 
normalized branch length (red; reference nucleosome PDB: 1ID3). The pE-MAP data was 
filtered prior to clustering to only contain alleles mapping to residues included in 1ID3. The 
mean distance between mutants for 100 randomly generated trees is plotted in black.  (B) 
Comparison of the signal of several histone mutant categories as determined in this dataset. 
Here, signal is defined as the sum of absolute S-scores. The point mutant boxplots only include 
single point mutations, and thus exclude two strains with multiple mutations (H3 K4,9,14,18Q 
and H3 K4,9,14,18A). 

 
  



Gene deletion profiles sorted by number of strong genetic interaction scores
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Fig. S3. Processing of pE-MAP data and calculation of phenotypic similarities. (A) To 
increase the signal-to-noise ratio of the pE-MAP data, the gene deletion profiles were ranked 
based on the counts of their genetic interaction scores that fell in either the top 2.5% of positive 
scores or bottom 5% of negative scores of the complete pE-MAP. Gene deletions with the same 
count were then ranked by the mean of the absolute values of their highest and lowest score. 
The top 25% of the ranked deletions were retained for computing the point mutant phenotypic 
profile similarities (B). (B) Comparison of phenotypic profiles using MIC. Pairs of point mutants 
with more similar profiles (i and j) receive a higher MIC value than those that have less similar 
profiles (i and k). (C) Statistical association of the distance between two mutated residues with 
their phenotypic similarity. Top: MIC values were computed after ranking gene deletions and 
selecting top 10, 25, 50, and 100% of the ranked deletions, and plotted against the distance 
between the two mutated residues in the [-ray structure (PDB: 1ID3). The grey lines 
correspond to the upper distance bound used for the implemented distance restraint (Methods, 
Eq. 1). Bottom: Maximum distance for each of the 20 MIC bins. R and p-values correspond to 
the Pearson correlation coefficient and association significance, respectively, for the log-
transformed MIC values. 
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Fig. S4. Histone H3-H4 docking results. (A) ;-ray structure of the histone H3-H4 dimer (PDB: 
1ID3). (B) Best scoring structure computed by PatchDock. (C) Cα RMSD for the top 100 scoring 
structures computed by PatchDock. (D) Cα RMSD histogram for these structures. 
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Fig. S5. Histone MIC value distributions. (A) Relationship between the number of protein-
wide systematic mutations (often to alanine) in the H3 and H4 subunits and the number of MIC 
values above the selected MIC value thresholds. Error bars represent one standard deviation 
from different random sets of mutations in each subunit. The horizontal gray dashed line 
represents 4 MIC values above the MIC thresholds. (B) Violin plot showing the MIC value 
distributions when grouped based on the secondary structure of the residue pairs. (C) Violin plot 
showing the MIC value distributions when grouped based on residue pairs being part of the 
histone cores or tails. 
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Fig. S6. Structural mapping of residue-specific genetic interaction data.  (A) Schematic of 
the structural mapping of genetic interactions using the Cytoscape stEMAP app. Genetic 
interaction data (here correlations of genetic interaction profiles) and the structure file (modified 
PDB 1ID3, Data S2) are imported into Cytoscape, creating a residue interaction network (RIN) 
of the nucleosome and the genes it interacts with. The RIN is constructed to reflect the 
orientation of the 3D view in ChimeraX and the genes are organized to reflect the dendrogram 
in the original clustered heatmap. The edges are colored to show the interaction (or correlation) 
scores. Using setsApp, known complexes are loaded to provide a quick way to select the genes 
in a complex and reflect those genes in all windows. The stEMAPP app will display a heatmap 
showing only the selected genes and their interacting residues and allows the user to adjust 
various parameters via the controls at the bottom of the panel, including the minimum number of 
interactions required. The structural view is shown in the ChimeraX window. When a gene or set 
of genes are selected, the residues that pass the user defined genetic interaction threshold are 
shown as spheres and colored according to the interaction score (Methods). Selection in the 
ChimeraX window is linked to the RIN shown in the main window. (B) Average distributions of 
genetic interaction scores (left) and genetic interaction profile correlations (right) of H3K36 
mutants (mean of H3K36A, H3K36R, H3K36Q). Genes required for SET2-mediated H3K36-
methylation that exhibit a mean S-score >2.5 or a mean correlation >0.2 with H3K36 mutants 
are highlighted. (C) Mapping of genetic interaction profile correlations to SET2 and associated 
genes, required for H3K36 methylation, on the structure of the nucleosome (modified PDB 1ID3, 
Data S2). N-terminal tail residues of H3 and H4 not included in 1ID3 are visualized as strings on 
the periphery. Only residues that exhibit a median genetic profile correlation >0.2 with deletions 
of the SET2 gene set members (SET2, CTK1, EAF3 and RCO1) are highlighted (Methods). H3 
(purple), H4 (light green), H2A/H2B and DNA (grey). The red color gradient reflects the strength 
of the correlation between each residue and the SET2 gene set, calculated as the median 
correlation between the residue’s tested mutations and the deletions of the SET2 gene set 
members. (D) Mapping of genetic interaction profile correlations of genes required for H3K56 
acetylation and deacetylation on the structure of the nucleosome (modified PDB 1ID3, Data S2). 
N-terminal tail residues of H3 and H4 not included in 1ID3 are visualized as strings on the 
periphery. Only alleles that exhibit a median genetic interaction profile correlation >0.2 with 
deletions of RTT109/ASF1 (responsible for H3K56 acetylation, left), or HST3/HST4 (responsible 
for H3K56 deacetylation, right) are highlighted (Methods). H3 (purple), H4 (light green), 
H2A/H2B and DNA (grey). The red color gradient reflects the strength of the correlation 
between each allele and deletions of RTT109/ASF1 or HST3/HST4, calculated as the median 
correlation between the allele and the respective gene sets. 
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Fig. S7. Genetic interactions connect H3 and H4 residues to cellular pathways.  (A) 
Heatmap representation of gene set enrichment analysis (GSEA, Methods) performed to unveil 
functional connections between histone residues and biological processes related to nuclear 
function. The genetic interaction profiles of 350 histone alleles were correlated to 4414 genetic 
interaction profiles from previous studies. The resulting matrix of 350x4414 Pearson correlation 
coefficients (CCs) was used for GSEA. Only modifiable histone residues are included in the 
heatmap. The color indicates the False Discovery Rate (FDR) between each residue and 
biological process. Residues, processes and connections that are further detailed in Fig. S7B-K 
are highlighted in red.  (B) Residues connected to DNA recombination & repair at FDR < 10-6 
were ranked by mean correlation, and K->R and R->K mutations of the top 3 residues were 
examined for their effect on mutation frequency. Spontaneous mutation frequency was 
measured by a 5-FOA resistance assay at the URA3 locus (Methods). Both H3R63K and 
H4R36K exhibit strongly increased mutation frequencies at the URA3 locus compared to wt, at 
a comparable level to H3K56R. Bar heights represent the mean of three replicates and error 
bars indicate standard error of the mean (SEM). (C) Effect on K56ac-levels of H4R36K and 
H3R63K, measured by quantitative mass spectrometry. This assay tests if the roles of H4R36 
and H3R63 in DNA repair are related to H3K56 acetylation (which has a central role in DNA 
repair). The lack of effect indicates that H3R63 and H4R36 function via a mechanism 
independent of H3K56 acetylation. Rtt109 is required for H3K56 acetylation and its deletion 
serves as a positive control (141). Bar heights represent the mean of three replicates and error 
bars indicate SEM.  (D) Workflow for cryptic transcription assay. Mutants predicted by GSEA to 
be involved in cryptic transcription (FDR < 10-6) were assayed for 5’- and 3’-transcript 
abundance by qPCR at the STE11 gene, known to produce cryptic transcripts (33, 142).  A 
greater output of transcripts from the 3’ region than the 5’ region indicates the presence of 
transcription start sites within the gene that give rise to cryptic transcripts.  (E) 5’ (red) and 3’ 
(blue) transcript abundance changes in histone mutants compared to wt (fold-change) at the 
STE11 gene. set2∆ is shown as a positive control, followed by the mutants predicted to exhibit 
cryptic transcription (FDR < 10-6) that result in over two-fold change of 3’ transcript abundance 
(H3K36A to H3K122Q), and finally three mutants not predicted to exhibit cryptic transcription 
(H4S64D, H3T6D and H3K121R). Circles represent replicates and bar heights indicate the 
geometric means. (F) ATAC-seq workflow. ATAC-seq is used to determine nucleosome-free 
regions (NFRs) on a genome-wide scale. H3K122 is at the histone-DNA interface (<5 Å), and its 
acetylation by Brd4 leads to nucleosome eviction in human cells (143). Nucleosome eviction 
can be facilitated by histone PTMs or amino acid substitutions that destabilize DNA-histone 
interactions (144). To determine the mechanism of cryptic transcription in H3K122A we used 
ATAC-seq to map nucleosome free regions (NFRs) in the gene body of STE11 and other genes 
known to give rise to cryptic transcripts. (G) ATAC-seq reads from open chromatin regions in 
the gene body of STE11 (blue). Deletion of SET2 or a H3K36A mutation give rise to open 
chromatin at two NFRs, located near TATA-box like sequences (NFR1 and NFR3). H3K122A 
gives rise to a third NFR in between the other two (NFR2), located at a B-recognition element 
(BRE). NFRs overlapping with previously reported start sites of cryptic transcripts and 
sequences important for transcription initiation are highlighted (NFR - red boxes, * - TATA-box 
element, BRE – B response element).  (H) Gene body plots of open chromatin regions within 11 
genes (FLO8, AVO1, LCB5, SMC3, SPB4, APM2, DDC1, SYF1, OMS1, PUS4, STE11) known 



to give rise to cryptic transcripts. The plots indicate the difference between each mutant and wt 
and the dashed lines at 0 indicate the wt chromatin accessibility. The gene lengths were 
normalized by binning all genes to a set number of intervals and plotting the average normalized 
read count for all the base pairs in each interval (Methods). Consistent with our findings at 
STE11, we observe that set2∆, H3K36A and H3K122A exhibit increased chromatin accessibility 
compared to wt. (I) 5’ (red) and 3’ (blue) transcript abundance changes in mutants compared to 
wt (fold-change) at the STE11 gene. Measured S-scores of double mutants are displayed above 
the labels. Circles represent replicates and bar heights indicate the geometric means. (J) 
H3K36-trimethylation (H3K36me3) levels as determined by Western Blot of H3K36A, H3K122A 
and H3K122Q compared to wt H3K36me3�levels. H3K122A has no effect on H3K36 
methylation, indicating that the H3K122A-Chd1-Spt2 pathway is independent of Set2-K36me. 
Histone H3 was used as loading control. L: long exposure; S: short exposure.  (K) 5’ (red) and 
3’ (blue) transcript abundance changes in mutants compared to wt (fold-change) at the STE11 
gene. Circles represent replicates and the bar heights indicate the geometric means. set2∆ 
H3K122A exhibits a much greater 3’ transcript abundance change than either single mutant 
alone, supporting that the H3K122A-Chd1-Spt2 pathway is independent of Set2-K36me. 
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Fig. S8. Statistical association of the distance between two mutated residues with their 
phenotypic similarity for different pE-MAP/CG-MAP datasets. (A) Top: Summary of the 
genetic interaction data used for integrative structure determination for histones H3-H4. Only the 
308 single point mutations were included in this analysis. 40 tail deletions and two strains with 
point mutations in multiple locations (H3 K4,9,14,18Q and H3 K4,9,14,18A) were excluded. 
Middle: Scatter plot of the MIC values and distances between the mutated residues in the wt 
histone structure (PDB: 1ID3). Bottom: Plot of the upper distance bound obtained by binning the 
MIC values into 20 intervals and selecting the maximum distance spanned by any pair of 
residues in each bin, followed by fitting a logarithmic decay function to these maximum 
distances (grey line, Eq. 1). The R-values and p value are reported for the Pearson correlation 
between the distances and the log-transformed MIC values (Eq.1). (B) Same as A, for yeast 
RNAPII. The complete RNAPII pE-MAP contains data from 53 point mutations, but only 44 of 
these target Rpb1 or Rpb2. The remaining 9 mutations are in other subunits and included in the 
MIC value count but not used for restraints. Distances were retrieved from PDB 2E2H. The grey 
line is shown for reference and corresponds to the fit to the histone upper distance bound.  (C) 
Same as A, for subunits RpoB and RpoC of bacterial RNAP. Distances were retrieved from 
PDB 4YG2. The grey line is shown for reference and corresponds to the fit to the histone upper 
distance bound. 
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Fig. S9. Coupling strengths for RpoB and RpoC predicted by RaptorX ComplexContact. 
Dependance of coupling strengths on the distances between residues in the X-ray structure 
(PDB: 4YG2) is plotted. Horizontal lines correspond to the coupling strength cutoffs when 
considering the top L/100, L/50, and L/25 predicted contacts, where L is the length of the 
concatenated sequence. 
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Fig. S10. Estimation of sampling precision for histones H3-H4. (A) Convergence of the 
model scores in the ensemble. Grey dots show that the scores do not continue to improve as 
more structures are independently computed. The dotted line indicates the highest score in the 
ensemble. (B) Distribution of scores for structures in samples A (dark green) and B (light green), 
comprising 20,000 random models in the ensemble. The magnitude of the difference is small, 
as demonstrated by the Kolmogorov-Smirnov two-sample test statistic (D=0.13). (C) Three 
criteria for determining the sampling precision (y-axis), evaluated as a function of the RMSD 
clustering threshold (x-axis). First, the p-value is computed using the χ2-test (one-sided) for 
homogeneity of proportions (red stars). Second, an effect size for the χ2-test is quantified by the 
Cramer’s V value (blue triangles). Third, the population of structures in sufficiently large clusters 
(containing at least ten structures from each sample) is shown as yellow circles. The vertical 
dotted grey line indicates the RMSD clustering threshold at which three conditions are satisfied 
(χ2-test p-value (0.679) > 0.05 (red, horizontal dotted line), Cramer’s V (0.06) < 0.10 (blue, 
horizontal dotted line), and the population of clustered structures (0.98) > 0.80 (yellow, 
horizontal dotted line)), thus defining the sampling precision of 2.03 Å. The three solid curves (in 
red, blue, and yellow) were drawn through the points to help visualize the results. (D) Population 
of structures in samples A and B in each of the three clusters obtained by threshold-based 
clustering using an RMSD threshold of 2.05 Å. The dominant cluster (cluster 1) contains 98% of 
the structures. Cluster precision and population is shown for each cluster. The precision of the 
dominant cluster defines the model precision.  
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Fig. S11. RNAPII docking results. (A) X-ray structure of Rpb1-Rpb2 (PDB: 2E2H). (B) Best 
scoring docking structure computed by PatchDock. (C) Cα RMSD for the top 100 scoring 
models obtained using rigid body docking structures computed by PatchDock. (D) Cα RMSD 
histogram for these top 100 scoring models obtained using rigid body docking. 
 
 

 

 

  



Table� 43:� Summary�of�Integrative�Structure�Determination�of� UIF�Histone�H3-H4�dimer

1) Gathering information
Prior models h3: comparative model, template 1TZY:G

h4: comparative model, template 1TZY:H
Physical principles and statistical preferences Excluded volume

Sequence connectivity
Experimental data 170 pE-MAP derived distance restraints

2) Representing the system
Composition (number of copies) h3: 1

h4: 1
Atomic (structured) components h3: 39-136

h4: 20-103
Unstructured components None
Resolution of structured components 1 [R1] residue per bead
Resolution of unstructured components None
Structural coverage 100.0 %
Rigid body (RB) definitions RB1: h339�136

RB2: h420�103

Spatial restraints encoded into scoring function Excluded volume; applied to the R1 representation
Sequence connectivity; applied to the R1 representation
pE-MAP MIC pair-restraints; applied to the R1 representation

3) Structural Sampling
Sampling method Replica Exchange Gibbs sampling, based on Metropolis Monte

Carlo
Replica exchange temperature range 1.0 - 2.5
Number of replicas 4
Number of runs 60
Number of structures generated 2500000
Movers for flexible string of bead Random translation up to 4.0 Å
CPU time 4 hours on 20 processors

4) Validating the model
Models selected for validation
Number of models after equilibration 2500000
Number of models that satisfy the input information 1162507
Number of structures in samples A/B 639091/523416
p-value of non-parametric Kolmogorov-Smirnov two-sample

test

0.006 (threshold p-value > 0.05)

Kolmogorov-Smirnov two-sample test statistic, D 0.96
Thoroughness of the structural sampling
Sampling precision 2.03 Å
Homogeneity of proportions �2

test (p-value)/Cramers V value 0.679/0.006 (thresholds: p-value>0.05 OR Cramer’s V<0.1)
Number of clusters 1
Cluster populations cluster 1 : 98.6 %
Cluster precisions cluster 1 : 1.04 Å
Average cross-correlation between localization probability den-

sities of samples A and B

cluster 1: 1.0

Validation by information used for modeling
Percent of sequence connectivity restraints satisfied per struc-

ture

99 %

Percent pE-MAP restraints satisfied per structure 87 %
Percent of excluded volume restraints satisfied per structure 99 %

5) Benchmark
Structural accuracy (95 % CI) 3.8 (2.6-5.1) Å
PDB used for benchmark 1ID3

6) Software and data availability
Modeling programs IMP PMI module, version develop-9c8707cfc5

Integrative Modeling Platform (IMP), version develop-
9c8707cfc5
MODELLER, version 9.21

Modeling scripts and data https://integrativemodeling.org/systems/pemap

1



Homology detection and structure prediction HHPred, version 2.0.16
Visualization and plotting UCSF Chimera, version 1.10

Matplotlib, version 3.0.3

2



Table S3. Summary of the integrative structure determination, thoroughness of 
configurational sampling, structure precision, and validation of histones H3 and H4. More 
details in (112). 



Table� 48:� Summary�of�Integrative�Structure�Determination�of�RNAPII�Rpb1-Rpb2

1) Gathering information
Prior models rpb1: comparative model, template 6GMH:A

rpb2: comparative model, template 4AYB:B
None: sequence

Physical principles and statistical preferences Excluded volume
Sequence connectivity

Experimental data 123 pE-MAP derived distance restraints

2) Representing the system
Composition (number of copies) rpb1: 1

rpb2: 1
Atomic (structured) components rpb1: 13-58, 82-105, 120-143, 173-184, 200-551, 565-589, 606-

1077, 1098-1105, 1119-1171, 1191-1240, 1256-1286, 1304-1404
rpb2: 24-68, 88-139, 162-301, 314-565, 579-639, 655-661, 681-
709, 740-871, 887-917, 934-1099

Unstructured components rpb1: 1-12, 59-81, 106-119, 144-172, 185-199, 552-564, 590-605,
1078-1097, 1106-1112, 1113-1118, 1172-1190, 1241-1255, 1287-
1303
rpb2: 1-23, 69-87, 140-161, 302-313, 566-578, 640-654, 662-680,
710-739, 872-886, 918-933

Resolution of structured components 1 [R1] residue per bead
Resolution of unstructured components 10 [R10] residues per bead
Structural coverage 85.07 %
Rigid body (RB) definitions RB1: rpb11�1105

RB2: rpb11113�1404

RB3: rpb21�1099

Spatial restraints encoded into scoring function Excluded volume; applied to the R1 representation
Sequence connectivity; applied to the R1 representation
pE-MAP MIC pair-restraints; applied to the R1 representation

3) Structural Sampling
Sampling method Replica Exchange Gibbs sampling, based on Metropolis Monte

Carlo
Replica exchange temperature range 1.0 - 2.5
Number of replicas 8
Number of runs 60
Number of structures generated 3600000
Movers for flexible string of bead Random translation up to 4.0 Å
CPU time 36 hours on 20 processors

4) Validating the model
Models selected for validation
Number of models after equilibration 3600000
Number of models that satisfy the input information 425380
Number of structures in samples A/B 210367/215013
p-value of non-parametric Kolmogorov-Smirnov two-sample

test

0.012 (threshold p-value > 0.05)

Kolmogorov-Smirnov two-sample test statistic, D 0.23
Thoroughness of the structural sampling
Sampling precision 14.84 Å
Homogeneity of proportions �2

test (p-value)/Cramers V value 0.000/0.099 (thresholds: p-value>0.05 OR Cramer’s V<0.1)
Number of clusters 2
Cluster populations cluster 1 : 81.7 %

cluster 2 : 14.8 %
Cluster precisions cluster 1 : 9.78 Å

cluster 2 : 9.92 Å
Average cross-correlation between localization probability den-

sities of samples A and B

cluster 1: 0.76

cluster 2: 0.84
Validation by information used for modeling
Percent of sequence connectivity restraints satisfied per struc-

ture

99 %

Percent pE-MAP restraints satisfied per structure 95 %
Percent of excluded volume restraints satisfied per structure 99 %

1



5) Benchmark
Structural accuracy (95 % CI) 16.8 (12.5-23.2) Å
PDB used for benchmark 1I3Q

6) Software and data availability
Modeling programs IMP PMI module, version develop-39c22a602

Integrative Modeling Platform (IMP), version develop-
39c22a602
MODELLER, version 9.21

Modeling scripts and data https://integrativemodeling.org/systems/pemap
Homology detection and structure prediction HHPred, version 2.0.16
Visualization and plotting UCSF Chimera, version 1.10

Matplotlib, version 3.0.3

2



Table S8. Summary of the integrative structure determination, thoroughness of 
configurational sampling, structure precision, and validation of RNAPII Rpb1-Rpb2. More 
details in (112). 



Table� 49:� Summary�of�Integrative�Structure�Determination�of�Bacterial�RNAP�subunits�Rpob�and�Rpoc

1) Gathering information
Prior models X-ray structure 4YG2
Physical principles and statistical preferences Excluded volume

Sequence connectivity
Experimental data 63 conditional genetics derived distance restraints

2) Representing the system
Composition (number of copies) rpob: 1

rpoc: 1
Atomic (structured) components rpob: 3-1342

rpoc: 8-931, 1135-1374
Unstructured components rpob: 1-2

rpoc: 932-1134
Resolution of structured components 1 [R1] residue per bead
Resolution of unstructured components 20 [R20] residues per bead
Structural coverage 92.49 %
Rigid body (RB) definitions RB1: rpob3�1342

RB2: rpoc8�931,rpoc1135�1374

Spatial restraints encoded into scoring function Excluded volume; applied to the R1 representation
Sequence connectivity; applied to the R1 representation
pE-MAP MIC pair-restraints; applied to the R1 representation

3) Structural Sampling
Sampling method Replica Exchange Gibbs sampling, based on Metropolis Monte

Carlo
Replica exchange temperature range 1.0 - 2.5
Number of replicas 4
Number of runs 50
Number of structures generated 2500000
Movers for flexible string of bead Random translation up to 4.0 Å
CPU time 16 hours on 20 processors

4) Validating the model
Models selected for validation
Number of models after equilibration 2500000
Number of models that satisfy the input information 656275
Number of structures in samples A/B 407275/249000
p-value of non-parametric Kolmogorov-Smirnov two-sample

test

0.251 (threshold p-value > 0.05)

Kolmogorov-Smirnov two-sample test statistic, D 0.0
Thoroughness of the structural sampling
Sampling precision 9.38 Å
Homogeneity of proportions �2

test (p-value)/Cramers V value 1.000/0.000 (thresholds: p-value>0.05 OR Cramer’s V<0.1)
Number of clusters 1
Cluster populations cluster 1 : 100.0 %
Cluster precisions cluster 1 : 6.61 Å
Average cross-correlation between localization probability den-

sities of samples A and B

cluster 1: 0.68

Validation by information used for modeling
Percent of sequence connectivity restraints satisfied per struc-

ture

99 %

Percent pE-MAP restraints satisfied per structure 94 %
Percent of excluded volume restraints satisfied per structure 99 %

5) Benchmark
Structural accuracy (95 % CI) 15.0 (12.1-18.2) Å
PDB used for benchmark 4YG2

6) Software and data availability
Modeling programs IMP PMI module, version develop-39c22a602

Integrative Modeling Platform (IMP), version develop-
39c22a602

Modeling scripts and data https://integrativemodeling.org/systems/pemap
Homology detection and structure prediction HHPred, version 2.0.16

1



Visualization and plotting UCSF Chimera, version 1.10
Matplotlib, version 3.0.3

2



 
 

Table S9. Summary of the integrative structure determination, thoroughness of 
configurational sampling, structure precision, and validation of bacterial RNAP RpoB-
RpoC. More details in (112).  
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